Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 5(12): 5645-5656, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36446396

RESUMO

A hernia is a pathological condition caused by a defect or opening in the muscle wall, which leads to organs pushing through the opening or defect. Hernia recurrence, seroma, persistent pain, tissue adhesions, and wound infection are common complications following hernia repair surgery. Infection after hernia mesh implantation is the third major complication leading to hernia recurrence. In order to reduce the incidence of late infections, we developed a polypropylene mesh with antibacterial properties. In this study, knitted polypropylene meshes were exposed to radio-frequency plasma to activate their surfaces. The antibacterial monomer diallyldimethylammonium chloride (DADMAC) was then grafted onto the mesh surface using pentaerythritol tetraacrylate as the cross-linker since it is able to engage all four functional groups to form a high-density cross-linked network. The subsequent antibacterial performance showed a 2.9 log reduction toward Staphylococcus aureus and a 0.9 log reduction for Escherichia coli.


Assuntos
Hérnia Ventral , Telas Cirúrgicas , Humanos , Telas Cirúrgicas/efeitos adversos , Polipropilenos , Hérnia Ventral/tratamento farmacológico , Antibacterianos/farmacologia
2.
Opt Express ; 30(9): 13915-13930, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35473146

RESUMO

We consider a method of sub-wavelength superlocalization and patterning of atomic matter waves via a two dimensional stimulated Raman adiabatic passage (2D STIRAP) process. An atom initially prepared in its ground level interacts with a doughnut-shaped optical vortex pump beam and a traveling wave Stokes laser beam with a constant (top-hat) intensity profile in space. The beams are sent in a counter-intuitive temporal sequence, in which the Stokes pulse precedes the pump pulse. The atoms interacting with both the traveling wave and the vortex beam are transferred to a final state through the 2D STIRAP, while those located at the core of the vortex beam remain in the initial state, creating a super-narrow nanometer scale atomic spot in the spatial distribution of ground state atoms. By numerical simulations we show that the 2D STIRAP approach outperforms the established method of coherent population trapping, yielding much stronger confinement of atomic excitation. Numerical simulations of the Gross-Pitaevskii equation show that using such a method one can create 2D bright and dark solitonic structures in trapped Bose-Einstein condensates (BECs). The method allows one to circumvent the restriction set by the diffraction limit inherent to conventional methods for formation of localized solitons, with a full control over the position and size of nanometer resolution defects.

3.
Carbohydr Polym ; 282: 119100, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123739

RESUMO

Due to the promising properties of chitosan for biomedical engineering applications like biodegradability, biocompatibility, and non-toxicity, it is one of the most interesting biopolymers in this field. Therefore, Chitosan and its derivatives have attracted great attention in vast variety of biomedical applications. In the current paper, different types of chitosan-based bioadhesives including passive and active and their different types of external stimuli response structure such as thermo, pH and Light responsive systems are discussed. Different bioadhesives mechanisms with chitosan as an adhesive agent or main polymer component and some examples were also presented. Chitosan based bioadhesives and their potential biomedical applications in drug delivery systems, suture less surgery, wound dressing and hemostatic are also discussed. The results confirmed wound healing, hemostatic and bioadhesion capabilities of the chitosan bioadhesives and its great potential for biomedical applications.


Assuntos
Materiais Biocompatíveis , Quitosana , Adesivos Teciduais , Animais , Humanos
4.
Sci Rep ; 11(1): 20721, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671063

RESUMO

We propose a theoretical scheme for creating a two-dimensional Electromagnetically Induced Grating in a three-level [Formula: see text]-type atomic system interacting with a weak probe field and two simultaneous position-dependent coupling fields-a two dimensional standing wave and an optical vortex beam. Upon derivation of the Maxwell wave equation, describing the dynamic response of the probe light in the atomic medium, we perform numerical calculations of the amplitude, phase modulations and Fraunhofer diffraction pattern of the probe field under different system parameters. We show that due to the azimuthal modulation of the Laguerre-Gaussian field, a two-dimensional asymmetric grating is observed, giving an increase of the zeroth and high orders of diffraction, thus transferring the probe energy to the high orders of direction. The asymmetry is especially seen in the case of combining a resonant probe with an off-resonant standing wave coupling and optical vortex fields. Unlike in previously reported asymmetric diffraction gratings for PT symmetric structures, the parity time symmetric structure is not necessary for the asymmetric diffraction grating presented here. The asymmetry is due to the constructive and destructive interference between the amplitude and phase modulations of the grating system, resulting in complete blocking of the diffracted photons at negative or positive angles, due to the coupling of the vortex beam. A detailed analysis of the probe field energy transfer to different orders of diffraction in the case of off-resonant standing wave coupling field proves the possibility of direct control over the performance of the grating.

5.
Opt Lett ; 46(17): 4204-4207, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469975

RESUMO

We study the formation of spatially dependent electromagnetically induced transparency (EIT) patterns from pairs of Laguerre-Gauss (LG) modes in an ensemble of cold interacting Rydberg atoms. The EIT patterns can be generated when two-photon detuning does not compensate for the Rydberg level energy shift induced by van der Waals interaction. Depending on the topological numbers of each LG mode, we can pattern dark and bright Ferris-wheel-like structures in the absorption profile with tunable barriers between sites, providing confinement of Rydberg atoms in transverse direction while rendering them transparent to light at specific angular positions. We also show how the atomic density may affect the azimuthal modulation of the absorption profile.

6.
Opt Express ; 28(24): 36936-36952, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379777

RESUMO

We propose a robust localization of the highly-excited Rydberg atoms interacting with doughnut-shaped optical vortices. Compared with the earlier standing-wave (SW)-based localization methods, a vortex beam can provide an ultraprecise two-dimensional localization solely in the zero-intensity center, within a confined excitation region down to the nanometer scale. We show that the presence of the Rydberg-Rydberg interaction permits counter-intuitively much stronger confinement towards a high spatial resolution when it is partially compensated by a suitable detuning. In addition, applying an auxiliary SW modulation to the two-photon detuning allows a three-dimensional confinement of Rydberg atoms. In this case, the vortex field provides a transverse confinement, while the SW modulation of the two-photon detuning localizes the Rydberg atoms longitudinally. To develop a new subwavelength localization technique, our results pave a path one step closer to reducing excitation volumes to the level of a few nanometers, representing a feasible implementation for the future experimental applications.

7.
Opt Lett ; 45(21): 6090-6093, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137076

RESUMO

We show that for the two widely used configurations of the double-Λ atom-light coupling scheme, one where the control fields are applied in the same Λ-subsystem and another where they are applied in different Λ-subsystems, the forward propagation of the probe and signal fields is described by the same set of equations. We then use optimal control theory to find the spatially dependent optimal control fields that maximize the conversion efficiency from the probe to the signal field, for a given optical density. This work can find application in the implementation of efficient frequency and orbital angular momentum conversion devices for quantum information processing, as well as to be useful for many other applications using the double-Λ atom-light coupling scheme.

8.
Opt Lett ; 45(19): 5440-5443, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001914

RESUMO

We investigate the possibility to attain strongly confined atomic localization using interacting Rydberg atoms in a coherent population trapping ladder configuration, where a standing-wave is used as a coupling field in the second leg of the ladder. Depending on the degree of compensation for the Rydberg level energy shift induced by the van der Waals interaction, by the coupling field detuning, we distinguish between two antiblockade regimes, i.e., a partial antiblockade (PA) and a full antiblockade. While a periodic pattern of tightly localized regions can be achieved for both regimes, the PA allows much faster convergence of spatial confinement, yielding a high-resolution Rydberg state-selective superlocalization regime for higher-lying Rydberg levels. In comparison, for lower-lying Rydberg levels, the PA leads to an anomalous change of spectra linewidth, confirming the importance of using a stable uppermost state to achieve a superlocalization regime.

9.
Sci Rep ; 10(1): 16684, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028911

RESUMO

We investigate the quantum linear and nonlinear effects in a novel five-level quantum system placed near a plasmonic nanostructure. Such a quantum scheme contains a double-V-type subsystem interacting with a weak probe field. The double-V-subsystem is then coupled to an excited state by a strong coupling field, which can be a position-dependent standing-wave field. We start by analyzing the first-order linear as well as the third and fifth order nonlinear terms of the probe susceptibility by systematically solving the equations for the matter-fields. When the quantum system is near the plasmonic nanostructure, the coherent control of linear and nonlinear susceptibilities becomes inevitable, leading to vanishing absorption effects and enhancing the nonlinearities. We also show that when the coupling light involves a standing-wave pattern, the periodic modulation of linear and nonlinear spectra results in an efficient scheme for the electromagnetically induced grating (EIG). In particular, the diffraction efficiency is influenced by changing the distance between the quantum system and plasmonic nanostructure. The proposed scheme may find potential applications in future nanoscale photonic devices.

10.
Sci Rep ; 10(1): 7389, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32355197

RESUMO

We study the nonlinear optical properties in an asymmetric double AlGaAs/GaAs quantum well nanostructure by using an external control field and resonant tunneling effects. It is found that the resonant tunneling can modulate the third-order and fifth-order of susceptibilities via detuning frequency of coupling light. In presence of the resonant tunneling and when the coupling light is in resonance with the corresponding transition, the real parts of third-order and fifth-order susceptibilities are enhanced which are accompanied by nonlinear absorption. However, in off-resonance of coupling light, real parts of third-order and fifth-order susceptibilities enhance while the nonlinear absorption vanishes. We investigate also the two-dimensional electromagnetically induced grating (2D-EIG) of the weak probe light by modulating the third-order and fifth-order susceptibilities. In resonance of coupling light, both amplitude and phase grating are formed in the medium due to enhancement of third-order and fifth-order probe absorption and dispersion. When the coupling light is out of resonance, most of probe energy is transferred from zero-order to higher-order directions due to resonant tunneling effect. The efficiency of phase grating for third-order of susceptibility is higher than phase grating for fifth-order susceptibility. Our proposed model may be useful for optical switching and optical sensors based on semiconductor nanostructures.

11.
Opt Express ; 26(22): 28249-28262, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30470000

RESUMO

Recently a scheme has been proposed for detection of the structured light by measuring the transmission of a vortex beam through a cloud of cold rubidium atoms with energy levels of the Λ-type configuration [N. Radwell et al., Phys. Rev. Lett.114, 123603 (2015) ]. This enables observation of regions of spatially dependent electromagnetically induced transparency (EIT). Here we suggest another scenario for detection of the structured light by measuring the absorption profile of a weak nonvortex probe beam in a highly resonant five-level combined tripod and Λ (CTL) atom-light coupling setup. We demonstrate that due to the closed-loop structure of CTL scheme, the absorption of the probe beam depends on the azimuthal angle and orbital angular momentum (OAM) of the control vortex beams. This feature is missing in simple Λ or tripod schemes, as there is no loop in such atom-light couplings. One can identify different regions of spatially structured transparency through measuring the absorption of probe field under different configurations of structured control light.

12.
Carbohydr Polym ; 199: 445-460, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30143150

RESUMO

Advanced development of chitosan hydrogels has led to new drug delivery systems that can release their active ingredients in response to environmental stimuli. This review considers more recent investigation of chitosan hydrogel preparations and the application of these preparations for drug delivery in wound dressings. Applications and structural characteristics of different types of active ingredients, such as growth factors, nanoparticles, nanostructures, and drug loaded chitosan hydrogels are summarized.


Assuntos
Bandagens , Quitosana/farmacologia , Portadores de Fármacos/farmacologia , Hidrogéis/farmacologia , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Quitosana/síntese química , Quitosana/química , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Nanopartículas/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Cicatrização/efeitos dos fármacos
13.
Appl Opt ; 57(15): 4013-4019, 2018 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-29791374

RESUMO

This paper hints at the Goos-Hänchen shift properties of a cavity containing an ensemble of atoms using a four-level atomic system involving a Rydberg state. By means of the stationary phase theory and density matrix formalism in quantum optics, we study theoretically the Goos-Hänchen shifts in both reflected and transmitted light beams. It is realized that as a result of the interaction between Rydberg and excited states in such a four-level atom-light coupling scheme the maximum positive and negative Goos-Hänchen shifts can be obtained in reflected and transmitted light beams owning to the effect of the Rydberg electromagnetically induced transparency (EIT) or Rydberg electromagnetically induced absorption. In particular, when the switching field is absent and the Rydberg EIT is dominant in the medium, a giant Goos-Hänchen shift can be achieved for both reflected and transmitted light beams.

14.
Avicenna J Med Biotechnol ; 10(1): 22-28, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29296263

RESUMO

BACKGROUND: Hydro-distillation (HD) method is a traditional technique which is used in most industrial companies. Microwave-assisted Hydro-distillation (MAHD) is an advanced HD technique utilizing a microwave oven in the extraction process. METHODS: In this research, MAHD of essential oils from the aerial parts (leaves) of rosemary (Rosmarinus officinalis L.) was studied and the results were compared with those of the conventional HD in terms of extraction time, extraction efficiency, chemical composition, quality of the essential oils and cost of the operation. RESULTS: Microwave hydro-distillation was superior in terms of saving energy and extraction time (30 min, compared to 90 min in HD). Chromatography was used for quantity analysis of the essential oils composition. Quality of essential oil improved in MAHD method due to an increase of 17% in oxygenated compounds. CONCLUSION: Consequently, microwave hydro-distillation can be used as a substitute of traditional hydro-distillation.

15.
Appl Opt ; 53(24): 5391-7, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25321110

RESUMO

Optical bistability (OB) and optical multistability (OM) behavior in molecular magnets is theoretically studied. It is demonstrated that the OB of the system can be controlled via adjusting the magnetic field intensity. In addition, it is shown that the frequency detuning of probe and coupling fields, as well as the cooperation parameter, has remarkable effects on the OB behavior of the system. Also, we find that OB can be converted to OM through the magnitude of control-field detuning. Our results can be used as a guideline for optimizing and controlling the switching process in the crystal of molecular magnets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...